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Radiation by an electron in a Coulomb field 
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Cavendish Laboratory, Cambridge University, Madingley Road, Cambridge CB3 OHE, UK 

Received 12 June 1973 

Abstract. The cross section for free-free transitions-bremsstrahlung at non-relativistic 
velocities-an be reduced to simple formulae in various limiting cases. In two of these 
cases, the quantum-mechanical result is known to agree with Kramers’ classical calculations 
(namely g = 1 and g = (J3/71) In(. . .)in the usual ‘Gaunt factor’ notation of astrophysicists). 
The intermediate case does not seem to have been completely cleared up, and it is investigated 
here. The result found does not agree with the formula of Elwert ; it depends on a function of 
a single variable, and coincides with the classical result. This bridges the gap between the two 
low-frequency formulae. A short table of the function is given. 

A method is given for calculating the cross section in the more general conditions in 
which g is nearly equal to 1 (hv not small compared with $mu:). There is a region of overlap 
between the result so obtained and the preceding one, which provides a check on the correct- 
ness of both. 

1. Introduction 

The problem of the emission of radiation by an electron passing a nucleus is such an 
old one that it might be thought it was completely solved, anyhow in the non-relativistic 
case. The general formulae for free-free transitions, containing hypergeometric func- 
tions, can be reduced to simpler functions in some six or seven limiting cases. One such 
case, referring to the low-frequency end of the spectrum which is of some astrophysical 
interest, does not appear to have been cleared up hitherto. 

Kramers (1923), before the discovery of quantum mechanics, calculated the radiation 
emitted on the basis ofclassical theory. He gave a general formula (equation (12) below) 
and two simpler formulae in two limiting cases which were widely used by astrophysicists. 
Quantum-mechanical calculations have shown that his two simpler formulae are valid 
under suitable conditions ; but the question of his more general case remains open, and 
indeed such work as has been done indicates a different result (Elwert 1939,1948). It will 
be shown here that the cross section is given correctly by Kramers’ general formula, 
depending on a function of a single variable, in the case when hv << $mu: << I ,  the ioniza- 
tion potential. These conditions mean that the electron loses a small fraction of its 
energy, and that the principal quantum numbers are large. They look plausible as 
necessary conditions for formulae based on a classical hyperbolic orbit : it turns out 
that they are also sufficient. 

In Q 4 we obtain a more general (quantum) formula for the case when the electron 
loses a finite fraction of its energy. In Q 5 we give a brief alternative derivation of one or 
two of the other known approximate results. 
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2. Notation 

The energies of the incoming and outgoing electron may be conveniently specified as 
I / r 2  and I / q 2 ,  where -I is the energy of the lowest bound state (K shell) ; 

5 = (,uoc2/47t)Ze2/hul ; 

i t  and iq are the analogues of the principal quantum number n. 

energy E ,  to emit a photon hw in the range of frequency dw/2n is 
According to quantum mechanics, the cross section for an electron with initial 

where 

D(i5,iq) = (q-()-'[F(-i{+l, -iu,l;z)2-F(-i{, - i q + l , I ; ~ ) ~ ]  (2) 

and z = - 45q/(q - <)2. 

The derivation of (1) is too long to give here : it will be sufficient to point out that it 
can easily be transformed into the formula derived by Sommerfeld (Sommerfeld and 
Maue 1935, Sommerfeld 1940). The only step in the process that might present difficulty 
is dealt with in appendix 1. The form (2) was first given by McLean (1934). 

3. The case of 6, q large, q-6 not large 

When 5 and r]  are nearly equal, these hypergeometric functions in (2) are to be regarded 
as analytic continuations of the series into the left half-plane, as the series themselves are 
divergent. It is advantageous to transform them into hypergeometric functions of the 
new variable 

1 ' I - 5  ' -- 
1-z -  (s) 

by means of the formula 

(3) 

The new series are always convergent, and the new variable (3) is small in the low- 
frequency limit. 

Expressing the two quantum numbers in terms of their mean and their difference, 

x = h + 5 )  
4 = ' I - 5  

5 = X-+q 

'I = x++q 
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the first of the two functions on the right in (2) becomes 

x F( - iX - iiq, iX - iiq, - iq ; q2/4X2). ( 6 )  

The next step is to evaluate the two series in this somewhat complicated expression 

For X -, CO with q fixed, the series can be simplified. All the four series required are 

(7) 

and the factors outside them, for large X. 

of the form 

2 ~ 1 (  -ix++m, iX++m, m ;  q2/4X2) 

with different values of m. As the convergence is uniform in X (appendix 2), it is per- 
missible to take the limit of each term. The term containing the sth power of the variable 
q2/4X2 is 

m ( m + l )  . . . (  m+s-l)s! [ 1 +o( 41. 
The hypergeometric series (7) thus reduces to the series ,,Fl(m; h2) in the notation of 
Barnes (Watson 1922, p loo), which is simply the Bessel function 

The factors attached to the series in ( 6 )  can also be simplified, using the relation 

In[r(iX + w ) r (  - i x  + w)]  = (2w - 1) In X - nX + ln(2n) + 0( 1/x2) 

which follows from Stirling's formula (with remainder). The first hypergeometric 
function in (2) then becomes 

The second function in (2) can be dealt with by merely changing the sign of q in the 
preceding calculation, provided that care is taken over two details: in the complex 
powers of q 2  which arise from the powers of (1 - z )  in (4), argq2 is still to be taken as 
zero and not & 2n ; and in expressing in terms of a Bessel function, it is natural to use 
I&)  rather than I,( -4). The result is the same as (8) with the sign ofq changed only in the 
orders of the Bessel functions. 

Expressing the Bessel functions in terms of the usual 

K,(x) = $(I - ,(x) - I,(x))/sin vn 

and remembering that 

K - , ( x )  = K,(x) ,  
the expression (2) becomes 

(9) 
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and so, after using the recurrence relations, we have 
e2nX 

IDI = m(-qKi,(qlKlq(q)) .  

The factor in parentheses is real and positive; it is evident from (9) that it is real. 
On inserting this value in (l), we find the cross section 

1671 a: I d o  
3J3 1373 E ,  o -&?I __-- 

where g, the ‘Gaunt factor’, is the function 

dq) = - (J3/71) erqqKiq(q)Kiq(q) ; 

g(q) = (& J3)iq~l,“(iq)Hl~)’(iq). (12) 

(1 1) 

this is valid for 5 -, CO with q = q-5 finite, with an error of the order of I/(’. This 
result is identical, apart from notation, with Kramers’ general classical result 

For large q or small q ,  it goes over into the more commonly quoted formulae 

In the second formula, y = 0.577 . . . ; the error is of the order of q2(  - In q)3. The first 
formula is the leading term of an expansion (Watson 1922, 58.42, Abramowitz and 
Stegun 1964, p. 368), 

g = 1 +0*2177q-2’3 -0.0131 q - 4 ’ 3 . .  . . 
Some numerical values of the function (1 1) are given in table 1. 

Table 1. Kramers’ function (11) 

~ ~~ 

0.001 3,8844 0.1 1.7096 0.6 1,2741 1.2 1,1804 3 1.1012 
0.003 3,2968 0.2 1.5046 0.7 1.2502 1.4 1,1639 4 1.0841 
0.01 2.6809 0.3 1.4065 0.8 1.2310 1.6 1,1508 6 1.0646 
0.02 2.3512 0.4 1,3464 0.9 1.2151 1.8 1,1401 8 1.0535 
0.05 1.9603 0.5 1.3049 1.0 1.2018 2.0 1.1310 10 1,0463 

The result (1 1) is not in agreement with the formulae found by Elwert (1948), except 
in the limit, in which case neither offers anything new. 

4. The case of 5, q and q-5 all large 

It appears from the last section that 

g = 1+0*2177(~-~)-2’3-0*0131(~-~)-4’3 . . .  (14) 
when 5. --* 03 with q - 5 fixed, and q - 5 is subsequently taken to be a fairly large number, 
say 5 or 10. (This means E,/Z -, 0, and ( E ,  - E2),/(Z/E;) a rather small ‘large number’.) 
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This is unsatisfactory; to see better where and how (14) begins to break down, it needs 
to be supplemented by an investigation in which E ,  - E 2  is not so restricted. 

We therefore consider the case 5, q -+ CO with the ratio < / q  fixed and not equal to 1, 
which means E ,  - E 2  is a fixed fraction of E , .  But the result will be applicable even if 
( E ,  - E 2 ) / l  goes to zero faster than E,/I  provided it is large compared with ( E , / l ) 3 i 2 .  It 
can be found without much labour if the method is suitably chosen. 

It is not difficult to verify the usual result that the contour integral 

J u"-'(u - '(U -x)-" du 

satisfies the differential equation for F(a, b, c ;  x) if taken along a suitable path (Whittaker 
and Watson 1927, p 293). For the hypergeometric function F( - i t +  1, -iv, 1 ; x), with 
x < 0, this suggests considering 

(1/27ri)S ~-'"~(u-x)'q(f -U)'{-' du 

taken along a loop going round a cut from x to 0, in the positive sense, but not crossing 
another cut from 1 to 00. Choosing the arguments to be all zero where the path crosses 
the real axis in 0 < U < 1, it can be seen that this is not only a solution but is the right 
solution ofthe differential equation, because it becomes 1 in the limit x -+ 0. The quantity 
required is the value of this integral when x = -4<q/(q - l)', in particular when < and q 
are large and the ratio p = </q is k e d  (0 < p < 1). 

In order to arrange the two cuts symmetrically in the complex plane, we introduce the 
new variable 

2-(1 -p )u  
2p+(l  -p)u' 

t =  

The path now runs in the negative sense round a cut from - 1 to + 1, and there are cuts 
from l/p to cc and - 00 to - l / p  :changing the sign and traversing the path in the positive 
sense, we have 

1 (1+p)'{+'" 1 ( I + p t ) ' q ( e ) ' <  - dt 
2ni (1 - p ) ' t + ' v '  1 - p t  t +  1 (1 - p t ) ( t -  1) 

for the value of the first of the functions in (2). The second one can be obtained by chang- 
ing the it and iq in the exponents by one unit, which has the effect of replacing the last 
denominator in (15) by (1 + p t ) ( t +  1). 

To apply the saddle-point method, one regards the integrand in (15) as 

f0) exp(W0)) (16) 

with p fixed and q -+ 00, where 

It turns out that there are two saddle points : both are at t = 0 but they are on different 
sheets of the Riemann surface, ie approaching t = 0 from above and from below the cut 
(figure 1). There is a path of steepest descent, Img(t) = 0, passing through both, and 
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-l/P ! / P  

Figure 1. Path in the t plane. 

making angles of n/6 with the real axis. Near the saddle point on the lower side of the 
cut, where arg(t- 1) approaches -71, 

g(t) = np-2ip[31 -p2)t3 +$I -p4)t5+ . . .]. 
The value of Re g ( t )  decreases all the way to a value - n p  at the other saddle point, which 
is therefore unimportant. The important part of the contour is the piece near 0 where It1 is 
of the order of q-'13. 

There are several ways of carrying out this sort of calculation in detail. The method 
given in appendix 3 is a good deal shorter in practice than the traditional methods, and 
there is less risk of a slip in t%e calculation. The result (A.5) is equivalent to a Gaunt 
factor 

(17) 
A' 3E: -4E1E, +3Ei +- 22'35A' 1113(E1 - E2)2/3 21'335A 12/3(E, - E2)4/3 ' ' ' ' 

g=l----- A El + E ,  

The second term is positive and the third negative; the coefficients are 0.1728 and 

This formula shows the limit of validity of Kramers' simplest formula (g = 1). The 
range of validity overlaps with that of (14). In fact, if we suppose that ( E ,  - E,) /E,  tends 
to zero but not as fast as (E1/Z)'I2 ( q - (  -+ cc not as fast as 0, we obtain exactly the 
first three terms in (14). This gives a check on the correctness of both calculations. 

- 0.01 65. 

5. The case of q-5 small, 5q finite 

It is worth noticing that our transformation (4) or (6) leads easily to some of the existing 
approximate formulae. We again denote the mean and the difference of the quantum 
numbers by X and q according to (5). The two hypergeometric functions in (6) are now 
1 +O(q2) and 1 +$iq+ O(q3). Quantities like r ( l  +iX++iq) can be evaluated with two 
terms of a Taylor series in q, and the two parts of the first F in (2) then become 

sinh nX 
[(-$q)+(l +&+iq$(l)-iq Re $(1 +iX)]. 

After squaring and subtracting the other term, it is found that the Gaunt factor is 

g = (,/3/71) [ - ln(q/2X) + $( 1) - Re $( 1 + iX)] enq. (18) 
The factor exp(nq) is really superfluous to the order of accuracy aimed at, but it is in fact 
more important than any other higher-order corrections. (Here $(x) denotes the function 
d/dx In T(x).) 

Other known formulae can be obtained by further approximations. Thus if < and q 
are large, Re $(1+ iX) - In X and (18) goes over into (13). If on the other hand they 
are both small (X << 1) one obtains g = (J3/71) In [(q + <)/(q - <)]-the usual formula for 
high (but not relativistic) energies. 
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6. Comparison with previous work 

Karzas and Latter (1960) have computed g directly from hypergeometric series for a 
wide range of numerical values, and have given a family of curves ; we have not made any 
detailed comparison. 

For the conditions of the main part of this paper (8 3), Elwert has given a complicated 
formula (Elwert 1948, ‘Voraussetzung I’ equations (18) to (20)), which is inconsistent with 
our result (1 1) except in the limit, and is not a function of a single variable. The discre- 
pancy can be traced to a point (Elwert 1939, p 187) at which he retained the first two 
terms of a power series in which the powers decrease rapidly, but apparently overlooked 
the fact that the coefficients increase just as rapidly. 

Menzel and Pekeris (1935), in the course of a remarkable paper covering many 
topics, deal with the circumstances of our 9 4 and of 5 5. In the case of ( 2: r]  ( 5  and r]  
finite), their result (1.49) disagrees with our (1 1) ; this is because the approximations 
made in reaching their (A.26) assume more severe restrictions on r]  - 4. In the case when 
the ratio ( / r ]  is not near 1, they used a method which is in principle very similar to ours 
but is more laborious. Their result is equivalent to our (17) except for one term. The 
discrepancy originates in the fourth term of a complicated expansion (A.12), in which 
+ 121/700 should be - 1/140; in consequence, the number 484/15 should be replaced by 
-4/3 in (1.38H1.41) and elsewhere in their work. 

Appendix 1 

Sommerfeld and Maue (Sommerfeld and Maue 1935, Sommerfeld 1940) derived a 
theoretical cross section which depends on an expression of the form 

x(d/dx) IF( - it, - ir], 1 ; x) I’ 

To prove that this is equivalent to our formula (2), we require an identity for hypergeo- 
metric functions. 

We need not write the third and fourth variables, which are always c = 1 and 
x = - 4(r]/(q - 02, and we consider 

S E x(d/dx) [F(u, b)F( -U ,  - b)]. 

It is obvious from the hypergeometric series that 

aF(a, b) + xF’(a, b) = UF(U + 1, b). (A. 1) 

By making the replacements a + - b, b + - a  one obtains also 

bF(-a,  -b)-xF’(-a,  -b) = bF(-a, -b+l )  = (l-x)”+bbF(a+l,b).  ( A 4  

Now multiply the left-hand sides of (A.l) and (A.2); from the product subtract the same 
thing with a and b interchanged ; and do the same to the right-hand sides. This yields the 
identity 

(b  -a)S = ab(1- x)llfb[F(a + 1, b y  -F(a, b+ 1y1. 

The equivalence then follows immediately. 
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Appendix 2 

The fact that each term in the hypergeometric series 

a 

F(-iX+)m,iX+3m,m;q2/4x2) = C u s ( X )  
s=o 

tends to a limit as X --* 00, which was used above (at equation (7)), is obvious enough, but 
it is necessary to show that the convergence is uniform in some interval ( X o ,  CO) ; here m 
is any complex constant. Now 

U ~ + ~ ( X )  ~ ' + ( s + + m ) ~  q2 -- - 
UJX) (s+m)(s+l) 4x2' 

Let s1 be chosen so that 

ls+)mI2 
Is + ml (s + 1) 

< 4  

for all s > s l .  Then, for s > sl, 

and this will be less than 3 for all X in the range (a, 00) when s is also greater than some s2 
independent of X .  The uniform convergence is now easily deduced. 

Appendix 3 

One ofthe standard ways (Perron 1917) of evaluating a saddle-point integral such as (15) 
or (16) is to express the integrand in (16) as 

(A.3) 

combine the last two factors into a power series, and integrate along a tangent to the 
curve of steepest descent. By an obvious change of variable, each term in the power series 
gives rise to an integral of the form J e-"u" du with U real. 

It is simpler however to avoid bringing in r functions by using the Airy integral 
function (Miller 1946, Abramowitz and Stegun 1964, 0 10.4). By differentiating Airy's 
integral( in one of the usual forms) n times, and then writing k t  for the variable of integra- 
tion, one obtains 

en< exp[-fit(I -p2 ) t3 ]  exp[l -$((I -p4)t5 +. . .]f(t), 

.. . . 
I ,  = - exp( -+ik3t3)t" dt = Ai(")O. 

27Ci I J  a cxp( - 5irr/6) 

The nth derivatives appearing on the right of (A.4) are found from the Taylor series 
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They are : 

n 0 1 2 3 4 5 6  7 8 9  

Ai(")O A A' 0 A 2A' 0 4A 10A' 0 28A 

In order to evaluate the sum and difference of the two functions in (2), f ( t )  in (16) 
must be replaced by the series expansion of (1 - p2 t2 ) -  '(1 - t 2 ) -  ' multiplied by - 2(1+ p)t 
or by -2(1 + p t 2 )  respectively; one then multiplies by the series on the right of (A.3), 
suppressing terms in t 2 ,  t 5  or t s  which yield nothing. Applying (A.4) with k3 = 25( 1 - p2) 
now gives, for the sum and difference of the integrals (15), 2ni en< times 

and 

6 - 8p2 + 6p4 
A'+ . . .  

respectively. After inserting the external factors from (15) and using AA' = - 1/2nJ3 
one finds the result 

ie2"< ( q + e ) z i < + 2 i q (  A l + p 2  2A' 3-4p2+3p4 . . .). (A.5) 
k4 

D = - -  I--- +- 
n(J3)51 tl-e 5A' k2 35A 

The values of A = Ai0 and A' = Ai'O are given by Miller (1946) and Abramowitz and 
Stegun (1964). 
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